Perfect graphs of strong domination and independent strong domination
نویسندگان
چکیده
Let γ(G), i(G), γS(G) and iS(G) denote the domination number, the independent domination number, the strong domination number and the independent strong domination number of a graph G, respectively. A graph G is called γi-perfect (domination perfect) if γ(H) = i(H), for every induced subgraph H of G. The classes of γγS-perfect, γSiS-perfect, iiS-perfect and γiS-perfect graphs are defined analogously. In this paper we present a number of characterization results on the above classes of graphs. For example, characterizations of K4-free γSiS-perfect graphs and triangle-free γiS-perfect graphs are given. Moreover, the strong dominating set and independent strong dominating set problems as well as the weak dominating set and independent weak dominating set problems are shown to be NP-complete on a class of graphs. Several problems and conjectures are proposed.
منابع مشابه
Coverings, matchings and paired domination in fuzzy graphs using strong arcs
The concepts of covering and matching in fuzzy graphs using strong arcs are introduced and obtained the relationship between them analogous to Gallai’s results in graphs. The notion of paired domination in fuzzy graphs using strong arcs is also studied. The strong paired domination number γspr of complete fuzzy graph and complete bipartite fuzzy graph is determined and obtained bounds for the s...
متن کاملOn independent domination numbers of grid and toroidal grid directed graphs
A subset $S$ of vertex set $V(D)$ is an {em indpendent dominating set} of $D$ if $S$ is both an independent and a dominating set of $D$. The {em indpendent domination number}, $i(D)$ is the cardinality of the smallest independent dominating set of $D$. In this paper we calculate the independent domination number of the { em cartesian product} of two {em directed paths} $P_m$ and $P_n$ for arbi...
متن کاملA note on an induced subgraph characterization of domination perfect graphs
Let γ(G) and ι(G) be the domination and independent domination numbers of a graph G, respectively. Introduced by Sumner and Moorer [23], a graph G is domination perfect if γ(H) = ι(H) for every induced subgraph H ⊆ G. In 1991, Zverovich and Zverovich [26] proposed a characterization of domination perfect graphs in terms of forbidden induced subgraphs. Fulman [15] noticed that this characterizat...
متن کاملIndependent domination in directed graphs
In this paper we initialize the study of independent domination in directed graphs. We show that an independent dominating set of an orientation of a graph is also an independent dominating set of the underlying graph, but that the converse is not true in general. We then prove existence and uniqueness theorems for several classes of digraphs including orientations of complete graphs, paths, tr...
متن کاملUnique domination and domination perfect graphs
We review a characterization of domination perfect graphs in terms of forbidden induced subgraphs obtained by Zverovich and Zverovich [12] using a computer code. Then we apply it to a problem of unique domination in graphs recently proposed by Fischermann and Volkmann. 1 Domination perfect graphs Let G be a graph. A set D ⊆ V (G) is a dominating set of G if each vertex of G either belongs to D ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Mathematics
دوره 226 شماره
صفحات -
تاریخ انتشار 2001